
TDD, Refactoring and 
Dependency Injection: 

Agile’s answer to 
“Big Up-Front Architecture” 

(BUFA)

May 5th, 2006, Agile India Conference

Paul Hammant, 
ThoughtWorks, Inc

www.paulhammant.com

http://www.paulhammant.com
http://www.paulhammant.com


The problem?
Previous-era architects and stake-holders 
suggest that the only way to write software 
was after an exhaustive period of design.  
Latterly known as - 
           “big up front architecture”.

Craig Larman’s keynote cited plenty of 
evidence for this amongst other things being 
both problematic and perpetuated as a fact 
even today.



Embrace Change?
Agile suggests embracing change is the key 
to success ..

.. yet how do we convince process and 
control-drunk stake-holders that we are 
adept at embracing design change while 
building complex applications without a 
detailed prescriptive architecture?



Agile has always had some answers

Test Driven Development (TDD).

Refactoring makes design changes cheap

Continuous Integration Testing (CIT)

(cheekily ignoring the other agile practices)

Weíre g
oing t

o intr
oduce ea

ch 

briefl
y - t

hey a
re rea

lly w
orth 

prese
ntatio

ns in
 their

 own righ
t



Test Driven Development

• You write the unit-test BEFORE you 
write the implementation code - no 
exceptions.

• As a practice it helps drive design

• Many other methodologies cherry-pick 
from Agile .... but never TDD 

• Also read up on Behaviour Driven 
Development



} bad test method
naming by the way



Refactoring
• smart functions 

in IDE for 
change lots of 
code at once.

• guaranteed to 
be error free

• for Java and 
C# ...... 

• ... else do it by 
hand :-(



Continuous Integration 
Testing (CIT)

• Ensures changes ‘here’ don’t undo something 
‘there’

• Provides early warning system for any build 
issue as well as history

• Creates team excitement about working 
builds

• website makes project status
 or progress visible to all ThoughtW

orks 
open 

sourced 
a 

tool 
called

 CruiseContro
l 

some yea
rs ag

o 



Dependency Injection:
Components evolving or 

emerging over time... 



5 second introduction to 
Dependency Injection

imagine components ‘A’ and ‘B’.  A depends 
on B and declares B in its constructor to 

make that declarative and thus clear
simple stuff!



A

B

Depends on

A

B

First, we’re going to talk about 
component dependencies

Rather than use arrows
(which could be confusing if 
there are lots of them criss-
crossing) ...

}
... we’re going to use shapes.
In this case the semi-circle
implies a component need 
in A, that B can provide.

{



presenting component A

A

But wait - we notice after writing it that there is 
lots of other functionality inside it. 

Maybe, we feel, too much. 
Maybe we should separate into two components ....



we split code between A & B

A

B

Still it does not feel right
A feels good, but B is too fat. 
It’s doing too many things ....

A is 
dependent

on B
remember?

Chg
#1



Comps C & D Introduced

A

B

C

D

But later we have small rethink ....

Chg
#2

A is 
dependent

on B

B is 
dependent

on D



responsibilities rethought

A

B

CD

Chg
#3

A is 
no longer
dependent

on C, 
B is



then perhaps once more

A

B C

D

Chg
#4

A is 
again

dependent
on C, 
and C 
on D



the evolution recapped

A

A

B

A

B

C

D

A

B

CD

A

B C

D

1 2 3 4 } Refactorings with
new functionality

hours, 
days, 

or weeks apart



Was that the right way to 
illustrate an Agile 

component evolution?



No, we would have 
done it  TDD

ATestCase

A

A - is actually made 
like so ....



unit-test code is 
refactored too ...

A

B

ATestCase

A

MockB

BTestCase

B

- is actually made 
like so ....



and so on ...
A

B

C

D

ATestCase

A

MockB MockC

CTestCase

C

BTestCase

B

MockD

- is actually made 
like so ....



Mocking 

• Read up on JMock for Java

• And NMock for C#

• Mocking (or stubbing) helps drive design

• Also see RhinoMocks for .Net and 
EasyMock for both as tools that are 
alternatives



Things to remember
when making 
components



#1: You can over-use 
containers/frameworks...



Consider just A and B

yeah, they are a bit light, but they are 
representative of bigger components



bad: singleton registry

oops - ‘component registry 
can be synonymous with 

component container
 or framework’



bad: same thing, but 
strongly typed



good: passing a 
reference



good: short lifetime 
container/components



good: do you need a 
registry at all?



good: without registry, 
with short lifetime



#1 recap: if  you can exist 
without a registry/

container/framework
do so



#2: Composition is much 
better than Inheritance...



inheritance models are 
not perfect

Mammal

Bird

* maxAltitude
* airSpeed

Animal

Dog

Bat

* maxAltitude
*airSpeed  

Dove

Bat cannot leverage Bird functionality



composition models have 
less emergent limitations

• Bat has a FlightCapability

• Dove has a FlightCapability

          .... is better than .....

• Bad is a FlyingCreature

• Dove is a FlyingCreature



#3: Interface/
Implementation 

separation



A poor example.. 



Terms to search 
for in 

PicoContainer, The Spring Framework, 
Dependency Injection, Lightweight 
Components, EJB 3.0, Domain Driven Design, 
JBehave, JUnit, JMock, NMock, EasyMock, 
Rhino.mocks, Continuous Integration Testing, 
CruiseControl, Design Patterns, Refactoring



#4: Avoid meta-data 
(XML etc) 

wherever you can 
where it encodes 

functionality



Thanks to Ward Cunningham for the idea:  

“Dependency Injection 
is a key element 

of  agile architecture*”

* a second hand and paraphrased from his 
‘Agile vs Traditional panel’ 

at a Testing conference a year or so ago.



Thanks for coming!
Questions?


