
This version has been superseded by
another which you can find listed at:

https://devops.paulhammant.com/trunk-correlated-practices-diagram/

https://devops.paulhammant.com/trunk-correlated-practices-diagram/

On a DevOps
foundation

Trunk Based Development

Release from Trunk/Master

Common code ownership too

Branching
model

Use of flags/
toggles

Branch for Release”:
Branches are made late; bugs are fixed on

trunk, and cherry-picked TO the release
branch by a ‘merge meister’ (not a regular

developer); these branches feel frozen; prod
hardening is the goal; branches get deleted

after release w/o a merge back to trunk/master

 Flags used for tuning the running production stack while running

Toggles/Flags for hiding functionality that is not ready yet. One Continuous
Integration pipeline for each reasonable toggle permutation.

In-house
code
sharing

Pre-built
binary deps
checked in

Change that
“takes a while" Replacement via micro service - often a strategic heterogeneous rewrite

“Branch by Abstraction” in trunk (refactoring technique)On a branch to
merge back to trunk/

master/mainline (or not)

Short-Lived Feature Branches (SLFBs) that last 1-2 days max (per developer)
and integrated into Trunk/Master when truly done. GitHub Flow is very close

Pre-built versioned binary deps via a binary repo

At source level via Buck or Bazel made possible by monorepo layout

Via deliberate service boundaries as a architecture strategy (microservices)

Continuous
Integration

Batched
on limited
infra. Uses
named QA/
integ ends.
Red most of

the time

Etsy GitHub

Examples

Release
frequency

Manual
QA

QA
automation

Pre-Prod
environments
(other than the per-dev’r ones)

Handmade, slowly. Specialist
knowledge and approvals req’d, costly,
dreaded, intertwined shared down-
stack svcs that are busy & contested

Thorough yet appropriate functional UI tests that bypass login.
 Parallelization speeds everything up. Same

 source repo as prod code. Mocks/stubs and
 resettable data, all figure. ‘Test pyramid’ obeyed.

 All before a deployment to a pre-prod env

Has a formal QA dept,
with “over the fence” connotations

Quick, complete recreation is a habit (via IaC scripts).
Ephemeral QA envs are a possibility

'Eat Your Own Dogfood' usage of app, if applicable

Per-Developer
Environments

Dev workstation can instantiate some
pieces, but shares other downstack services

Microcosm of prod stack on workstation poss. incl. wire-mocking techniques
n/a

…….. Infrastructure as Code …….

In denial about value
of “tests” not actually
in source-control

Automated functional
UI tests. Run

sequentially from CI.
Separate source repo?

 Release certification rules
Expedited Thorough

Developers QA their own changes
or a “desk check” prior to checkin

DB rollbacks
Case by case (un prepared),

DBAs leading the effort

DB changes
(during deployment)

Pre-prepared delta scripts for
DB rollbacks, and much practice

(in case of a
regretted release)

Code
review

Some time after integration in batches

No code review

One commit a time after integrate - most
likely teams committing direct to trunk

Talent
retention

Talent leaves and
recruiters do not see

qualified candidates. Also:
‘B players hire C players’ *

 * Steve Jobs folklore

Talent accumulates, helps ‘lift the bar’, and maybe some
become speakers or bloggers.

A players hire A players *

One at a time, pre-integrate (Pull-Request), AKA “Continuous Review”

Config fully managed and separate to binaries & app source
App config per
Environment Outside of all management

Co-located with app source

 Delta scripts …

… that need
downtime

… that can’t
support multiple

versions

DBAs
doing

manual
changes

Developer
activity change
with proximity
to release

Methodology
Scrum or other Agile

Acknow
- ledged
Waterfall

Small percentage
of the developers
change activities

towards a release,
including excessive
cherry-pick merges

Many in dev team
change activities the
closer they get to a
release, including
getting very busy

merging. Also:
heroism rewarded

Very little
change at all

for any
developer

Kanban or ‘flow centric’ Agile as well as
 Continuous Deployment into Prod

No changes at all
for any developer

DB is forwards & backwards compatible by design.
No downtime needed for changes

Talent
comes

and goes
equally

possible secondary elastic
infrastructure for Selenium

Per and pre integration on elastic infrastructure
and most likely using unnamed ‘microcosm’

 environments that humans never use.

Basic centralized CI with master &
slave nodes, possibly into (limited)

named QA or integration envs
(batched or per integration)

Release
from tag:

Branches may be
made for retroa-

ctively for pro bug
fixes, if needs be

Release from commit hash:

“Fix forward” - bugs fixed in
trunk and will get released with the
next release naturally and will be
mingled with new functionality

Commit directly to
Trunk (if small team)

Long-lived Feature
Branches:

Develop on shared
branches and

merge to mainline/
master/trunk after
release. Or even

more creative
branching model.

Also: Code Freezes!

© 2014 - 2017, Paul Hammant. v2.6

Let me help you migrate to Trunk-
Based Development. Monorepos too,

if you want to go that far.

https://devops.paulhammant.com

 Many smaller repos (Git, Mercurial); separate buildable modules;
 separate OR coordinated releases;

 nearly always recursive build technologies

 One trunk (Monorepo style); with separately buildable modules;
with independent OR lock-step releases of those pieces;

and a greater likelihood of directed graph build technologies vs recursive

One repository with many
trunk/branches roots

within it (Svn, Perforce)

Repository
organization

Can also leverage CI infra during builds

Never under any
circumstances
do this for your
application or

service

Release prep
& readiness

No notice required, it is happening anyway

Only on the day that
was originally planned

Claims to do these
effectively quite often
do not match reality

can be done in conjunction withcan be done
together

No flags in code (or
very few). Team has
bet on branches?

A huge
number of

Legacy
enterprises

Claimed Agile,
but really:

Fragile,
Watergile or

Mini-waterfall

Agile and Continuous
Delivery into QA/UAT

only and to prod
less frequently

There are two slightly different
CDs, remember.

Modernized, competitive
enterprises

Startups wishing to take market from
legacy enterprises

Google (cadence varies for many deployable things)

1 release
every 100 days

1 release
every 10 days

100 releases
every day

10 releases
every day

1 release
every day

Facebook

Square

Truly ElasticNumerousLimited?Few / Snowflakes

Note: almost universally,
Pair-Programming is counted

as part (or all) of a review

No code freeze period in advance of a release; “always release ready”

 Sign-offs (maybe with
audit trails) required. Hello UAT

One hour notice is doable

Build Cop
role! Auto revert of commits of broken builds (not SLFBs though)

Human coordination/planning likely
No planning/coordination, software owns the release process

Bots make decis
-ions for humans
and execute with
-out waiting/asking

No more UAT or humans, bots only

OR

can be done
together

 can be
done together

some manual running
of ‘good’ UI automation

 Phew!
trunk never

breaks again

OR

Unit test automation (definition of build broadens)
Service test automation (definition of ‘build’ broadens)

When to Compile. Also package of application, if green (base defn of ‘the build’)

Functional UI test automation (definition of ‘build’ broadens)

Deployment to prod, if build green
Deployment to UAT (if the build is green)

CI

CD

