
A discussion on REST and a simple, low
dependency solution to interop between
Java and .Net over the wire.
By Paul Hammant and Ian Cartwright

In this article, we intend to show how simple tech-
nology coupled with a document-centric approach can
be used to deliver valuable business services without the
use of proprietary middle-ware or the complexities of
the web services stack. We take our inspiration from the
REST architectural style, and the ability to move XML
over HTTP.

The Web Service way
The best way to introduce this approach is to con-

trast it with a simple web service example. Imagine a
simple Weather Service exposing a web method called
‘WeatherQuery’ that returned the temperature and pres-
sure wrapped in an
object. In most cases
people take existing code
and use a tool to expose
a method and generate
some WSDL.

If you believe the
hype all we need to do
now is point an equiva-
lent Java tool at the
WSDL and generate a
stub-method.

Unfortunately things are not quite that simple,
WSDL is a broad standard, in fact broad enough to be
open to interpretation. In our case we found .Net en-

forced a document approach and our java tools assumed
the opposite, RPC. We also found issues with mixtures of
namespaces, inclusion of schemas and tools splitting the
WSDL into separate parts. In short the technology starts
to distract from the actual problem we are trying to
solve.

To compound the issue, we also found inconsisten-
cies within tools for web services. For example versions of
Internet Information Server and Web Services En-
hancements were only partially compatible with each
other or their Java equivalents for automatically pub-
lished WSDL documents.

We became very weary of something that may be
kludged to work today, but may break tomorrow if a
more complicated web method were needed in later ver-
sion of the service.

A more RESTful style
The above approach made two key assumptions:

firstly that just exposing an existing method call would
give us a meaningful service, and secondly that tools

Java
Client

some some

some!.Net
Client

Java
Server(s)

.Net
Server(s)

 This paper published in (http://InfoQ.com)

SIMPLE JAVA AND .NET
SOA INTEROPERABILITY M

ay
 2

00
6

http://InfoQ.com
http://InfoQ.com

would make getting at that service via web services triv-
ial.

Instead of thinking about the parameters of the
request and the type of the return, we can think of the
request as a document that embodies the type of request
along with its parameters. Think of that document as
something that represents part of the contract for the
business process you are trying to model. If we take the
same WeatherQuery method, and describe it in an ele-
ment normal XML we might see something like -

Also as a document, the return type may look like -

 Now we can define a simple class design that repre-
sents the same fields as the documents -

The interesting thing about these two documents is
that they are relatively easy to serialize and deserialize in
both .Net and Java. For .Net, the built-in XML serializa-
tion (with some annotations) does the job well. Here is
the C# for the same classes -

Java is not so lucky. It has no built in tools for XML
serialization: however there is an open source tool called
XStream (http://xstream.codehaus.org/) that is perfect
for the job -

<WeatherQuery>
 <locn>chicago</locn>
 <date>2006 02 12 18:52</date>
</WeatherQuery>

<WeatherDetails>
 <locn>chicago</locn>
 <date>2006 02 12 18:52</date>
 <temp>32</temp>
 <pressure>30</pressure>
</WeatherDetails>

public class WeatherQuery {
 private String locn;
 private Date date;
 // .. getters & setters
 // or properties ..
}
public class WeatherDetails {
 private String locn;

 private Date date;
 private int temp;
 private int pressure;
 // .. getters & setters ..
}

[XmlRoot("WeatherQuery")]
public class WeatherQuery {

 [XmlElement("locn")]
 private string locn;
 [XmlElement("date")]
 private DateTime date;

 // property: get{}& set{} ..
}

Our Weather service currently only facilitates the
exchange of documents,
and as a consequence, we
could use plain HTTP
instead of Web Services.

 With this shift, we are
able to think about multi-
ple document types using
the same entry-point into
the system giving us a
more extensible approach

.

Coding the Java server
The technologies we used for a Java implementation

of the service are that of the serialization library
XStream, and any servlet container, as we chose to host
the services inside a Servlet. XStream is open source: the
servlet container could be any of WebLogic, WebSphere,
JBoss, Geronimo, Orion or just Resin, Tomcat or Jetty if
less of the E in J2EE is required.

Our servlet should implement the doPost() rather
than doGet() method. We did not use a name/value pair
for the XML: we simply used the entire POST body,
which is a little outside of the HTTP specification. It is a
matter of preference though - as long as its the same on
client and server.

When a request comes in, we deserialize the XML
into a command object using XStream and appropri-
ately handle it.

Coding the .Net server
The server technologies for .Net are simpler - we

just used Internet Information Server (IIS) and .Net’s
built-in XML serialization. The built-in serialization
requires C# attributes to mark fields to as XML ele-
ments rather than XML attributes. There is a .Net port
of XStream that makes things simpler still, but we have
not experimented with that, and we have heard of an-
other port about to be launched on the open source
world.

XStream xs = new XStream();

String reqXML = xs.toXML(req);

Object req = xs.fromXML(reqXML);

Java
Client

! !

!!.Net
Client

Java
Server(s)

.Net
Server(s)

 This paper published in (http://InfoQ.com)

 2

S
im

p
le

 J
av

a
&

 .N
E

T
 In

te
ro

p

M
ay

 2
00

6

http://xstream.codehaus.org
http://xstream.codehaus.org

Coding the Java client
For the Java client in additional to XStream we use

Apache’s HttpClient library (and its dependencies). See
http://jakarta.apache.org/commons/httpclient/

The HttpClient library is quite simple to use and
allows a POST operation to be programmatically con-
structed before execution. Remember, the POST body is
entirely XML delivered by XStream as either name/
value pairs or the entire request without that HTTP con-
struct. The former may be attractive if you want to cre-
ate a test web form for the service.

Coding the .Net client
For the .Net client you’ll need just the framework

and this can be either version 1.1 or 2.0.
For the POST operation, we can use the built-in

WebRequest class and and the built-in serialization.

Making it extensible and compatible
The beauty of simply POSTing XML that repre-

sents commands is that we can add more commands
later without changing our messages implementation.
The server can decide whether it can deal with the XML
at runtime -

 A good solution to the multitude of potential types
is to register a handler for each type, helping avoid a
large if/else or switch/case block -

When using XML there is a temptation to over-rely
on the related schema, We have to be careful to under-
stand the difference between schema validation and the
information a consumer might actually need.

Schema validation, if performed at runtime, gives a
developer a sense of safety that is not appropriate. A
failure may still happen - the wrong XML could be sent.
But what happens? There would be a schema invalid
exception message raised. Alternatively with the XML
mapped to a class’s design, there would either be a cor-
rect object, or it would be missing some fields. In that
situation, a real exception could be thrown with a real
reason, that could easily be turned into a clear XML
reply message for the consumer. The key difference is
that an exception is raised only if required information is
missing – anything else could change.

Inherently in this design, there is the possibility that
elements could be added to the XML (fields to the class)
that make it possible to move the API notionally forward
a notch. With some careful testing, the service could
support consumers sending older versions of the request

<PostWeather>
 <locn>chicago</locn>
 <date>2006 02 12 21:00</date>
 <temp>32</temp>
</PostWeather>

 map.register(”WeatherQuery”,
 new WeatherQueryHandler());

documents. An API change, as well as being ‘extra field’
level, could also be more far reaching:

It may be better to encode the version number into
the URL though:

http://x.com/weather/WeatherQuery/2.0

Wrapping it in Web Services
There is nothing to stop you from mounting a sec-

ond service on the same server to accept formal Web-
service requests for the same service. All you would need
is a single WSDL specified method like -

Your tool choices are WSE 2.0 /3.0 for .Net or
Glue, AXIS, JAX-WS, or
some built-in adapter for
one of the J2EE contain-
ers for Java. The SOAP
encoded method could
simply delegate to the
same demarshal-execute-
marshal code developed
for the pure REST im-
plementation. You may
be doing this to side-step
the corporate standards
police.

Extending it to Messaging
Leveraging Tibco Rendezvous, we were able to send

the same XML representations of requests around for
execution against an implicitly asynchronous service. We
did not try MQ Series but it should work too.

For our example this means the request for weather
details is not going to be immediately satisfied. Instead,
some time later, a response may come back. It is a huge
shift that might mean changing or abandoning some of
the simple designs you might have for an API. For ex-
ample, the following facade method may have to go :

In its place two interfaces, each with a single
method, may be appropriate -

<WeatherQuery2>
 <locn>
 <city>chicago</city>
 <zip>60661</zip>
 </locn>

 <altitude>22000</altitude>
 <date>2006 02 12 18:52</date>
</WeatherQuery2>

String weatherCmd(String xmlRe-
quest)

WeatherDetails weatherQuery
 (String locn, Date date)

 This paper published in (http://InfoQ.com)

 3

S
im

p
le

 J
av

a
&

 .N
E

T
 In

te
ro

p

M
ay

 2
00

6

http://jakarta.apache.org/commons/httpclient/
http://jakarta.apache.org/commons/httpclient/
http://x.com/weather/GetWeather/2.0
http://x.com/weather/GetWeather/2.0

There is lots to learn about messaging patterns,
which we’ll not be going
into here. However, it
may be worth noting that
there are two general
designs to consider. The
first is a queue design,
where requests from you
receive responses directed
only to you. The second
is a multicast concept,
where there are events on
the wire that are being
sent to many subscribers
(pub/sub). Also, implic-
itly, there is the possibility
that you could engineer a
queue to continue
streaming revised details
over time. If you are
familiar with JMS, Ren-
dezvous works slightly
differently in this respect.

Whither WSDL
The producer/consumer design we have coded

trades XML in a simple design. But the specification
checking that is inherent in the discovery phase of a
formal Web Services design is missing from ours.

We suggest it is not really needed. Instead, and
wholly in line with Agile thinking, have a comprehensive
Continuous Integration suite of integration tests. Your
service incompatibilities will be discovered before you
deploy to live. So instead of a complex WSDL specifica-
tion you have a series of unit tests that make assertions
about the service from both a provider and consumer
point of view. Anyway, WSDL only flags incompatibili-
ties at runtime, when recovery is very hard. Thus is it a
false god?

Schematron is one way of creating such tests in a
platform independent way.

To aid debugging and documentation, you may
want to host some sample documents :

You could also have an XML Schema (XSD) con-
trolling the document format :

void weatherQuery
 (String locn, Date date)
void acceptWeather
 (WeatherDetails details)

<WeatherDetails>
 <locn>AAAAAA</locn>
 <date>CCYY MM DD HH:MM:SS/date>
</WeatherDetails>

Serving both the XSD and the sample XML stati-
cally could be a good idea (the authors differ on the
XSD as it happens). Served statically means that the API
can be queried by a human with a web browser -

http://x.com/weather/xsd/WeatherQuery

http://x.com/weather/sample/WeatherQuery

Remember, both the XSD and sample document
are optional and could easily be generated too.

Recap and Key Message
The magic here was to use Codehaus’ XStream to

participate in a element-normal document exchange
with .Net via HTTP-POST operation rather than GET.
Just about everything else has been blogged and white-
papered before. Choosing XStream meant that the
‘specification’ for the message was in Java and/or C#
and not an XML based design as is usually encountered
with WS-* specs.

Also, conventional REST wisdom suggests that
HTTP-GET is better for encoding the command...

http://x.com/weather/WeatherQuery?locn=Chicago

... especially when the result is cacheable by a web server.
Perhaps our style is best for communication where at-
tempts at caching are pointless. There are other advan-
tages to the GET approach that we have lost with ours.
It is more elegant and eminently testable by a humans
with a browser by virtue of a complete URL. It lacks,
however, the versatility we get with POST which allows
more than just name/value pairs for parameters; the
XML payload can be arbitrarily complex. There is room
for GET and POST, of course, in larger solutions.

While writing this paper, we made a suggestion to
the XStream team (by way of a patch) that would make
it more able to support attributes where appropriate.
They implemented the required functionality and future
versions of XStream will be able to support XML at-
tributes for more seamless introp with .Net.

We also suggested that the approach works with
async transports like Tibco RV. Current WS-* spec tools
have little to no capabilty in this regard.

In the end, we are not sure whether this is POST-
REST (PREST) or just good old REST without much
caching and URL simplicity and no new coined terms.

...
<xs:element name=”WeatherQuery”>
 <cs:complexType>
 <xs:all>
 <xs:element name=”locn”
 type=”xs:string”/>
 <xs:element name=”date”
 type=”xs:string”/>
 </xs:all>
 </cs:complexType>
</xs:element>
...

 This paper published in (http://InfoQ.com)

 4

S
im

p
le

 J
av

a
&

 .N
E

T
 In

te
ro

p

M
ay

 2
00

6

http://x.com/weather/xsd/GetWeather
http://x.com/weather/xsd/GetWeather
http://x.com/weather/sample/GetWeather
http://x.com/weather/sample/GetWeather
http://x.com/weather/GetWeather?locn=Chicago
http://x.com/weather/GetWeather?locn=Chicago

