
6 December 2003

nversion of Control (IoC) is about soft-
ware components doing what they are
told, when they are told. Your OO appli-
cation could well become unmaintain-
able without it.

IoC is a pattern that helps teams
avoid the dependency hell that results
when an application grows into a large
pseudo-platform without taking care to
adequately decouple logic; that thing
that ultimately only a couple of its
omnipotent architects or old-lag premi-
um-rate contractors really understand;
that system that Heath Robinson and
Rube Goldberg might have made
together (look them up).

The problem with small working
applications that become large is that
static-method entanglement does not
scale. One part of a system that’s other-
wise fairly self-contained, statically
accesses another part of the system
and cannot be instantiated without
invoking methods in the latter. Thus it
can’t easily be isolated for unit testing.
What’s more, it can’t be developed as
an independent component. Compo-
nents that are developed separately
can have their own development
teams and may well be part of a larger
design. These components will have
their own source control directory and
can be developed against mock imple-
mentations of their dependent compo-
nents. All this will help overall develop-
ment become faster, in terms of both
the team’s efficiency and the build
time.

As an example, let’s take a Personal
Information Manager (PIM) applica-
tion that has UI and persistence ele-
ments. The naïve implementation
might have inline JDBC statements
among graphical code. A componen-
tized application would have that per-
sistence logic separated into a persist-
ence component with user interface
logic enshrined in a view-controller
component. Clearly, if the two teams
developing their respective compo-
nents agree on a slowly evolving inter-
face/implementation-separated API for
persistence, they can develop at their
own pace and ship versions of their
components whenever it’s appropriate.

A third piece, which is not a compo-
nent, would be the bootstrap for the
application. That bootstrap may well be
entirely contained in a static main
method of a simple class and would
merely instantiate the two components,
passing one into the other’s constructor
before invoking setVisible(true) or simi-
lar. With the introduction of this boot-
strap we can see the control aspect of
the IoC pattern.

In a noncomponentized version of
our example, the view-controller may
well have its own main method, might
instantiate a fixed version of the PIM
store, or access it via an unnecessary sin-
gleton factory (public static methods are
generally bad), i.e., the control is very
much inside the component in question.

The word “inversion” from the pat-
tern name is about getting control
back. The containing application (often
a true container or a proper framework
rather than a main method) controls
when a component is instantiated and
which implementations of its depend-
ent components it is passed.

IoC also dictates the configuration of
components. A JDBC version of the PIM
store above would clearly require some
JDBC settings. Classically, developers may
write a mechanism to retrieve them from
a fixed properties file. IoC would insist
that the configuration is passed into the
component. In our hypothetical example,
it would take it via the constructor and be
interface/implementation separated.
Thus the configuration is a component. It
would be tightly coupled to the compo-
nent that requires it, but subject to multi-
ple implementations, one of which may
be the “from properties file”.

Inversion of Control has moved to the
center stage in the last six months after a
five-year gestation period. There are three
types of Inversion of Control. Type 1 uses
configuration data (Avalon, JContainer);
Type 2 uses bean introspection (Spring,
WebWork, HiveMind); Type 3 uses con-
structor signatures (PicoContainer).

Type 1 versus Types 2 and 3 – com-
ponents for the former cannot easily be
used outside of a container. As such it’s
appropriate to only talk of Type 1 as a
true container requiring design. Type 2

Inversion of
Control Rocks Paul Hammant

I

VIEWPOINT

President and CEO:
FFuuaatt KKiirrccaaaallii fuat@sys-con.com

Vice President, Business Development:
GGrriisshhaa DDaavviiddaa grisha@sys-con.com

Group Publisher:
JJeerreemmyy GGeeeellaann jeremy@sys-con.com

Advertising
Senior Vice President, Sales and Marketing:

CCaarrmmeenn GGoonnzzaalleezz carmen@sys-con.com
Vice President, Sales and Marketing:
MMiilleess SSiillvveerrmmaann miles@sys-con.com

Advertising Sales Director:
RRoobbyynn FFoorrmmaa roybn@sys-con.com

Director, Sales and Marketing:
MMeeggaann RRiinngg megan@sys-con.com
Advertising Sales Manager:

AAlliissaa CCaattaallaannoo alisa@sys-con.com
Associate Sales Managers:

CCaarrrriiee GGeebbeerrtt carrieg@sys-con.com
KKrriissttiinn KKuuhhnnllee kristen@sys-con.com

Editorial
Executive Editor:

NNaannccyy VVaalleennttiinnee nancy@sys-con.com
Associate Editors:

JJaammiiee MMaattuussooww jamie@sys-con.com
GGaaiill SScchhuullttzz gail@sys-con.com
JJeeaann CCaassssiiddyy jean@sys-con.com

JJeennnniiffeerr VVaann WWiinncckkeell jennifer@sys-con.com
Online Editor:

LLiinn GGooeettzz lin@sys-con.com

Production
Production Consultant:

JJiimm MMoorrggaann jim@sys-con.com

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Paul Hammant is a still-coding
architect for ThoughtWorks in

London and has been program-
ming professionally since 1989.
He was a former committer on

Apache’s Avalon project, but left
and cofounded the open-source

PicoContainer project and its
sister NanoContainer as well as

remaining involved the
post-Avalon JContainer project.

E-mail: phammant@
thoughtworks.com

NEED
HEAD
SHOT

and 3 components can be used outside of a
container. They are as close to POJOs as possi-
ble. It’s the deployer’s choice to hard code and
embed, or to leverage a container for manage-
ment. Types 2 and 3 do not require a compo-
nent to declare their components in the
accompanying XML (Type 1 does).

Type 1, Apache’s Avalon and JContainer’s
DNA, uses a series of interfaces to describe
whether a component has component
dependencies or requires configuration, and
whether start/stop life-cycle concepts are per-
tinent. Many ordinary POJO coders find Type
1 a turnoff.

Type 2 (SpringFramework, HiveMind,
WebWork2) uses setters to hand component
dependencies and configuration into a com-
ponent. Type 2 components are said to be
more beanlike than Type 1. Applications can
be brittle if an important setter is not called.

Type 3 (PicoContainer), like Type 2, also
strives to be transparent. It uses constructors
instead of settors and this is deliberately brit-
tle, not withstanding the fact that you can
have multiple constructors.

For a componentized system that uses sin-
gletons or similar for component resolution,
the dependency is obscure. In IoC it is declar-
ative. The application would have loosely cou-
pled components and be more scalable, more
maintainable, and more testable. It’s a very
small investment for a very large return.
Inversion of Control rocks.

NEEDS TO BE
TRIMMED

