
Paul Hammant’s guide to killing singletons and
heading to Dependency Injection, by way of

Service Locator.
v2.0: March 2013.

Note: This is a refresh of an article I did for InfoQ in April of 2008 -
http://www.infoq.com/articles/drinking-your-guice-too-quickly
which was a write up of part of 2005 mission since detailed in http://
paulhammant.com/2013/03/11/legacy-app-rejuvenation

We are at the 9 year mark for “Dependency Injection” the term and
the technologies and practice is about a 10/11 years old now. formal
Inversion of Control (IoC) is now 15 years on or so.

Overview
This document outlines how to move to Dependency Injection (DI)
from a nest-of-singletons starting point.

This can prove to be difficult. Attacking one singleton at a time,
without dragging in most of the source-base is highly desirable,
but hard. This following approach outlines a safe and methodical
technique, that allows for the ‘hair-ball’ to be attacked in a number
of smaller commits.

Singletons happen

Singletons and static mutable state have been accused of being
problematic for many years.

There is no doubt that an application built according to the
principals of DI is a more testable and a cleaner architecture than
the sprawling singleton hair-ball.

It is often the case, though, under time pressure, that simple

http://www.infoq.com/articles/drinking-your-guice-too-quickly
http://www.infoq.com/articles/drinking-your-guice-too-quickly
http://paulhammant.com/2013/03/11/legacy-app-rejuvenation
http://paulhammant.com/2013/03/11/legacy-app-rejuvenation
http://paulhammant.com/2013/03/11/legacy-app-rejuvenation
http://paulhammant.com/2013/03/11/legacy-app-rejuvenation

Singletons make it easy to bridge large gaps between components.
What starts with one or two singletons, can end up being tens or
even hundreds, until the entire team declares that the code is
unmaintainable. The boss is not about to commission a rewrite, but
likes the promise of DI, so it seems pragmatic to refactor the
current codebase towards it.

☜ A metaphor for
entanglement

Once you have decided to change direction towards that DI nirvana,
you have to know which path to take. Sure, you could stop feature
development and bug fixing and just go for it, but that is not the
right way. Instead, you would want to deliver new functionality at
the same time, and experience tells us that a promise to put in The
Spring Framework (Spring henceforth) in a week or two ends up
being many months later. Even if the DI work is performed on a
branch that is divergent to the one where features and bug fixes are
still being coded, there is a risk of merge-hell when the DI refactor
is finished.

It is also not clear where to start. Do you put a DI container in
‘main’ method (if it is pertinent to your app) with no registered
components yet and commit that change first? Or do you start at
the web-tier and move towards DI there? Also does the DI container
get populated with the results of singleton lookups initially, with
‘TODO’ comments promising a revisit later? Either of these can be
messy and unsavory.

'Service Locator' as a stepping stone to Dependency
Injection

Martin Fowler wrote the definitive article on Dependency Injection in
2003 (Paul gets a credit in that article). The formal field for DI was
young at the time, and Martin discussed Service Locator as a worthy
alternative choice. Of course, it means different things to different
people, but for now assume it means a single class (that is a
singleton itself) with a method on it like so...

public	 Object	 getService(String	 serviceName)	 {
	 	 //	 etc
}

Or...

//	 yay	 generics!
public	 T	 getService(Class	 serviceType)	 {
	 	 //	 etc
}

The idea is that in a boot-like place (the main method?) it is
populated with appropriate instances for the service names/classes,
instances. In a build phase, unit tests can alternatively program the
service locator with a mix of real and mock instances making for
streamlined setup of tests. Wherever there are singleton lookups in
the legacy codebase, a small change is made to lookup the same
component via the service locator instead.

ZipCodeService	 z	 =	 ZipCodeService.getInstance();

Becomes...

ZipCodeService	 z	 =	 ServiceLocator.getInstance()
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 .	 getService(ZipCodeService.class);

This is only good for 'application scoped' services/components.
Modern web frameworks have session and request-scoped
components and handle the dependency injection for them as those
scopes come into life. If you are heading towards DI today in an
existing codebase, then it is likely that you do not yet have one of
the modern web frameworks in the application, so live with what

http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html

you have for now. Specifically, try to this DI work on it’s own,
without perhaps concurrently tackling a retooling to a new web
framework.

Back to specifics.

The service locator needs to be populated in the primordial boot
place...

public	 void	 setService(String	 serviceName,	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Object	 implementation)	 {
	 	 //	 etc
}

To make this safe, you may want to have a mechanism to lock the
service locator and make it read only after that moment. That lock()
method would be called at the end of the main method before any
“start” lifecycle were invoked and would very effectively prevent
misuse.

Putting in your service locator is the just the start. What follows is a
series of small commits where you are replacing one singleton's
Xyz.getInstance() method with getService(Xyz.class) on the service
locator instance. In effect these singletons have now become
'managed single instances'. You might find it a good time to
interface/impl separate the component in question. One reason you
might decide to do that is to facilitate mocking (Mockito is the best
library for that) because you obviously want to simultaneously
increase the test coverage for the application.

When you have exhausted the list of Singletons to eliminate, you
can revisit the code fragments that use the service locator. It might
be that a getService() invocation is done wherever the component/
service was needed in a class. It may even be done multiple times in
the same class (garbage collected each time when de-scoped). In
that case, doing the getService() invocation once in a constructor
and storing the result as a member variable would be smart. As
mentioned, that could/should be a follow up. These are refactoring
operations and should be safe.

Following that you should ripple through the codebase again,
moving from the in-constructor getService() invocation and

assignment of member variable, to injection via the constructor
arguments. Thus the service locator lookup moves to the class &
method that would instantiate the class. If you do that again and
again, you’ll move all the service locator lookups to towards a
primordial place. We’ll come back to that later.

☜ Our metaphor for
entanglement benefiting from
an initial use of service locator..

California (a component
responsible for agriculture and
high-tech) needs Nevada to
provide gaming machine
functionality. Oregon
(Hazelnuts) and Arizona
(chemicals). All via service
locator now, and much more
visible because of that.

As mentioned, it is desirable to do the changes in a series of small
commits. Commits that will be easy for other developers to merge
in to their working copy. Those commits should happen in addition
to a team’s other commitments for an iteration (functional
improvements and bug fixes etc). The aim is to minimize the
chance of introducing defects, by being methodical. You should go
even further towards lowering that risk, by taking the opportunity
to add small unit tests (and appropriate mocking; queue 2nd plug of
Mockito) to these newly separated components.

Least Depending, Most Depended on first

This is a critical piece...

The first component to move towards the service locator design,
and away from its singleton origins, is the one that depends on no

other singletons, yet may be depended by other singletons. Of
course it can be depended on by any amount of non-singletons.

It's the lowest hanging fruit - the least depending and most
depended on.

It is also going to be the one that is easiest to get high coverage for
with small unit tests. Perhaps this means some work with your
favorite mocking library. As you process one and commit, another
will qualify as "least depending, most depended on".

While at Google I outlined a “Singleton Detector” that David Rubel
wrote: http://googlecode.blogspot.com/2007/07/google-
singleton-detector-released.html

It will represent in graph form, which classes are singletons, and
which classes use them. It’s a visual guide to where the least
depending, most dependent singletons are. It’s a bit tricky to use,
but worth it.

Spring after a short delay

Now that you have an application that is comprised of many
components accessed via a single service locator, it is time to put in
Spring and start moving components out of the Service Locator and
into the XML context, or Java compositional logic.

As mentioned, the most methodical way of doing this is to find one
of the service locator lookups in a constructor and push it to the
class instantiating it. Change it to a constructor argument at the
same time, and make the caller have a member variable for that
same dependency. If you keep pushing them up, sooner or later
your going to get them to the main method. At that time they can
safely become Spring managed.

When the DI container manages everything, the service locator can
be thanked for its good work and deleted. The unit tests, will
directly instantiate the class being tested, and directly inject mocks
as applicable.

http://googlecode.blogspot.com/2007/07/google-singleton-detector-released.html
http://googlecode.blogspot.com/2007/07/google-singleton-detector-released.html
http://googlecode.blogspot.com/2007/07/google-singleton-detector-released.html
http://googlecode.blogspot.com/2007/07/google-singleton-detector-released.html

☜ Clean Dependency
! Injection Design

Some side effects are going to be long argument lists for some of
the classes/components. These are likely to be clues that the
design for the application could do with some work. Making a
facade at that point can often be the right thing.

Many companies have had some success with this methodical
approach. It works for situations where there are hundred of
components with which started out as a nest of singletons, and are
now lightweight Dependency Injection. It works too if EJB 3.0 (or
above) is your destination. It is also the experience that roll-out can
happen concurrently with normal coding, with no code-freeze to
facilitate merges at all.

Footnote

Dependency Injection is just one part of Inversion of Control (now
fourteen years old as a pattern/practice). The other two aspects are
configuration and lifecycle. The implication is that classes should be
given their configuration (more injection) and lifecycle state-
changes similarly controlled from outside. They should not get their
own configuration, spawn threads or listen on sockets. Get/spawn/
listen was tempting to do in their constructors, or worse still static
initializers, but those should disappear as your start to do
Dependency Injection and Inversion of Control properly.

Further Reading

Foote/Yoder used a ball of mud metaphor previously for general
entanglement: http://www.laputan.org/mud. I’m fond of “hairball”
as you can see above.

Martin’s 2004 article on Dependency Injection is still where you’d
start your journey to understanding it: http://martinfowler.com/
articles/injection.html

http://www.laputan.org/mud
http://www.laputan.org/mud
http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html

